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STABILIZATION OF S O L U T I O N S  OF T H E  N O N L I N E A R  E Q U A T I O N  

OF F I L T R A T I O N  OF A T W O - P H A S E  LIQUID 

N.  V .  K h u s n u t d i n o v a  UDC 517.958.532 

The asymptotic behavior (with unlimited increase in time) of solutions of boundary-value 
problems for the filtration equation for a two-phase liquid that describe the displacement of 
immiscible incompressible liquids from a bed is studied. Convergence of these solutions to 
the unique solution of the steady problem (stabilization) is established, and, under additional 
assumptions, the rate of convergence is evaluated. 

The initial boundary-value problem for the dynamic saturation s(x, t) in the region fl{0 ~< x ~< I, 0 <~ 
t < r has the form [1] 

ze(z) O't= 0 (k(z)a(s)~xx- Q(t)b(s)), (1) 

s(O,t) = sl(t), s(l,t) =0, s(z,O) = s0(z), 0 <~ sl(t) <~ 1, 0 < s0(x) < 1, (2) 

where a~ (x) > 0 and k(x) > 0 are the ground porosity and the filtration coefficient, respectively, and Q(t) > 0 is 
the total liquid flow. 

The functions a(s) and b(s) are defined for 0 ~< s ~< 1 and satisfy the conditions 

a(s)>O for 0 < s < l ,  a ( 0 ) = a ( 1 ) = 0 ,  
(3) 

b(s)>O, b ' ( s )>0  for 0 < s < l ,  b'(0)~>0, b'(1)~>0. 

Thus, the parabolic equation (1) degenerates into a first-order equation for the following two values of 
the required function: s = 0 and s = 1. 

Re m ark .  The change of variables 
:g $ 

t = t, f = = x ( x ) ,  = 
0 0 

transforms Eq. (1) to the equation 

as  o ( a ( s )  a s  ) 
0t - 0 f  0 f  Q(t)b(s) , 

where v(f) = k(x(~))ze(x(())r and x(~) _= X-I(~) is a function that is inverse for f = X(X). Hence, without 
loss of generality, we can set k(x) -- 1, a~(x) - u(x), and ~(1) = 1. 

S. N. Antontsev and V. N. Monakhov pioneered investigation into the correctness of nonlinear 
boundary-value filtration problems for a two-phase liquid. Antontsev and Kazhikohov [1] formulated conditions 
for the weak convergence of solutions of the boundary-value problems to steady solutions. 

Khusnutdinova [2, 3] and Artemova and Khusnutdinova [4] studied the stabilization of solutions of the 
boundary-value problems for the nonlinear equation of single-phase filtration. 
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In [51 (see also [6]) it is proved that a generalized solution s(x, t)  G C(flT) of problem (1), (2) that 
satisfies the inequalities 0 ~ s(x, t) ~< 1 and Eq. (1) in the sense of integral identity exists in the region 
at{0 < �9 <. 1,0 .< ~ < T} for any T > 0. It is also established that ]O~(s)/Ox I <. M,  (x, t)  E fiT with the 
constant M independent of T, which guarantees, in particular, finiteness of the phase flows Vl = - (Op/Ox-Qb)  
a n d v 2 = Q - v l .  

As in the case sl(t)  = 1 and u(x) _-- 1 (see [5]), the existence of such a generalized solution for 
boundary-value problem (1), (2) in the region f~ is proved. In this case, the corresponding integral identity 
has the form 

si[ o, 0.0, ) us Ot Ox Ox + Q(t)b(s) dt dx + u(z)so(x)f(z,O) dz = 0, (4) 
fl o 

where f ( x ,  t) G CI(f~) is any function which is equal to zero at x = 0 and x = l, and outside the finite region. 
Sufficient conditions for the existence of a generalized solution to problem (1), (2) in the region 12 are 

(i) so(x) e C[0, l], ~[s0(x)] S Cl[0, l], u(x) e C'+a[0, l], sl(t)  e C2[0, eo), 

a(s) E C1+~[0, 11, b(s) E C2+~[0,1], Q(t) E C0+")/2[0, oo), a s (0,1), 

si( t  ) > O, 0 < Q(t) <. Qo, t >>. O, o = so(l) < so(z) < 1, s0(0) ---- Sl(0 ). 

The function e(z)  ~ C[0, l] satisfying the inequalities 0 ~< e(z)  ~< 1 will be called a generalized solution 
of the boundary-value problem 

a(a) -~x - Qob(a) - 0, Q0 -- max Q(t) > 0, (5) 

e(O) = 1, or(1) = 0, (6) 

if there is a limited generalized derivative d~(e) /dx  and the following integral identity of the form (4) holds: 
/ 

/ [ ( ' a  e)-~zde _ Q o b ( e ) l h  d z : 0 .  (7) 
O 

Here f ( x )  E C1[0, l] is an arbitrary function which is equal to zero at z = 0 and x = I. 
Let us make additional assumptions: 

0 <<. Qo - Q(t) <~ Ml( t  + 1) -71, 

o < s0(~) .< e(z),  z ~ [0, l), 

0 ~< 1 - 81(~) ~ M 2 ( t  -+ 1) -71 ,  "~1 > O, 

�9 i hma(so)so(X ) < 0, Sl(0) > 0. x---~l 
$ 

f 
By virtue of the monotonicity of the function ~(s) = [ a(v) dr,  the above assumptions a r e  obviously equivalent 

0 
to 

O<~l-c2[si( t )]<<.M3(t+l)  -71, O<- . .Qo-Q( t )<. .M, ( t+l ) -71;  (8) 

l - x  
~,(kl) 7 "< ~,{s0(~)] < ~[e(~)], (9) 

where M3, M1, "/1, and kl <~ Sl(0) are certain constants. 
T h e o r e m . / f  conditions (i) (3), (8), and (9) are satisfied, the generalized solution of problem (1), (2) 

in the limit t --* cx) tends to the unique generalized solution e(x) of problem (5), (6), which satisfies the 
inequalities 

da d2 e 
0 .< e(z) .< l, ~ . < 0 ,  dGZ.<0, ~e[0 , l ] ,  (10) 
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and, if  

the estimate 

b'(~r)/> b0 = c o n s t  > 0, 0 ~< a ~< 1, (11) 

M 
I~[s(x,t)] - ~ [~ (x ) ] l  (t + 1)------~ [ (x , t )  E Q], (12) 

holds, where M and 7 > 0 depend on M3, M1, bo, 71, l, Qo, and the other data of  the problem. 
P r o o f .  By changing  the required funct ions  ~(s)  = v and r = u, we brought  boundary-value  

problems (1), (2) and (5), (6) to the form 

0% Ov v(z) Or 
L(v) =_ a(v)  ~x 2 - Q(t)B(v)  ~x  - - ~  = 0, (13) 

v ( 0 , t )  = v , ( t ) ,  = = 0, (14)  

d2u du 
A(u) -~5x2 - QoB(u) ~xx = O, (15) 

u(0) = r = 1, u(l) = qo(0) = 0. (16) 

Here A(v) = a(~(v) ) ,  B(v)  = b'(r  r  = r = s, v l ( t )  = ~[sl(t)] ,  vo(x) = qa[s0(x)], and v(l , t)  = 
~[s ( l , t ) ]  = O. 

Since qJs = a(s) > 0 for 0 < s < 1, the  s and  v are in one-to-one correspondence.  
As in [5], a solut ion s(x, t) of boundary-va lue  problems (1), (2) is ob ta ined  in the  l imit  n --* cr and 

m ~ ~ of the classical solutions s,,~n(x,t) = r of Eq. (1), where v,,,~(z,t) E C3+~(f~) satisfy 
Eq. (13), the  regularized initial  boundary  condi t ions  

Vmn(X,O) = VOmn(X), Vmn(O,t) = Vlmn(t) =~ V l ( t )  - -  1/m, Vmn(l, t)  = 1/n,  (17) 

l i r n  ( l ina  vom,,(x)) = vo(x), (18) 

and the inequalit ies 

- 1 OVmn 
1 < vmn(x,t)  < 1 - - - ,  < M. (19) 
n m Ox 

By construct ion (see [5]), vmn(x,t) form sequences monotonical ly  decreasing in n and monotonical ly  
increasing in m.  T he  same  is also true for stun(x, t) =- r  t)]. 

Similarly, a solut ion a(x) of p rob lem (5) (6) can be represented as the  l imit  of the  sequence of the 
functions am~(X) = r as n ~ c~ and m ~ ~ ,  where utah(x) E C3+~[0, l] are solut ions of Eq. (15) 

= 1 / .  (20)  

d 2 ~lmn 

dz  2 
< 0, x E [0, l I. (21) 

tha t  satisfy the  bounda ry  condit ions [cf. (16)] 

= 1 - l / m ,  

and are such tha t  

1 1 dumn 
- <~ urea(x) <~ 1 - - - ,  ~ < O ,  

m dx 

We first prove t h a t  a solution u,n,,(x) of p rob lem (15), (20) that  satisfies inequali t ies (21) exists and is 
unique. 

For simplicity, o m i t t i n g  the subscripts  at umn and wri t ing Eq. (5) as (d/dx)[du/dx - Qob('~(u))] = O, 
we obta in  

du 
d---x = Qob[r - QoC. (22) 
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Integrating once again, we come to the following implicit representation of the solution: 

1 ~ dr 1 
Q--'~ j C - b[r ---- l--  ~ I(C,  u), (23) 

where C is an arbitrary constant. For C = b[r - l /m)] ,  obviously, IQo - f(b[r - l /m)] ,  1 - l /m)  < 0. In 
addition, f (C,  1 - l /m)  ---+ 0 as C ~ oo and, hence, lQo - f (C,  1 - l /m)  > 0 for rather large C. Hence, for a 
certain C = Co > b[@(1 - l /m)] ,  we have f(Co, 1 - 1/m) = lQo, i.e., 

�9 (c0,1 - l / m )  = o,  (c0, l /n )  = t. (24) 
I Since C0 > b[r - l /m)]  and xu < 0, from Eqs. (22)-(24) it follows that there is a unique solution 

of problem (15), (20) that possesses the properties (21), and, thus, there is a unique solution of Eq. (5) that 
satisfies the boundary conditions 

amn(0) = r - Urn), 

and the inequalities 

damn 
r  amn( ) < r - -  l / m ) ,  

amn(/) = r  (22) 

d2 amn 
< O, dx----- 5-  < O, x �9 [0, l]. (26) 

Let us compare the functions utah(x) and Um(n+l)(z ) on the segment [0, l]. At x = 0, we have Umn(0) = 
Um(n+l)(0); at z = l, we obtain Umn(1) > Um(n+l)(1). 

In the interval 0 < x < l, the difference z = Um,,(x) - Um(n+I)(X) satisfies the linear parabolic equation 

d2 z dz 
A(um,) ~ - QoB(umn) ~x + nz  = 0, (27) 

where R = A'ukvl)/a ~ d2um( n+l)~x 2 QoB',(02) dum(n+l)dx and 01 and 02 are values that are intermediate between 

urea(x) and Um(n+l)(X)- 
By virtue of (27), the function w = z (x)e  -#t is a solution of the equation 

A(umn) 02w Ow Ow 
- QoB(um,) ~ + (n  - ~)w ot - o. 

We choose fl from the condition/3 - R > 0, x E (0, l). This is possible because of the boundedness 
of R. Hence, according to the maximum principle, we conclude that w(x, t) >1 0 at x �9 [0,/], i.e., utah(x) >1 
Um(,+l)(X). Similarly we see that Umn(Z) ~< U(m+l)n(X), X �9 [0,1]. 

Thus, the sequence {Utah(X)} is monotonically decreasing in n and monotonically increasing in m. The 
same is true for the sequence of the functions amn(X) - r where 0 < amn(X) < 1 because of the 
continuity of r 

By virtue of these properties, lim am,(Z) = am(Z) exists for every m. Obviously, 0 ~ am(x) <~ 
n- -+( :~  

am+l(z) < 1, x �9 [0, l], and, hence, limooam(X ) = a(z) exists. 

With allowance for (21), from (22) we obtain 

d~xm")  I ~< M0, 

where M0 does not depend on m and n. This implies that the limiting function qa[a(x)] satisfies the Lipschitz 
condition and in 12 there is a generalized derivative dqa(a)/dx, which does not exceed M0 in absolute value and 
is a *-weak limit of a certain subsequence d~[amknk]/dx ({amknk} C {an, a)). Passing to the limit nk --+ oo 
and mk ~ ~ for amknk(X) in identity (7), we prove the validity of (7) for a(z). 

Thus, a(x) is a generalized solution of boundary-value problem (5), (6) that  satisfies (10) [see (25) had 
(26)]. We show that the solution of problem (5), (6) that possesses the properties (10) is unique. 
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1 

f In the case lQo < b(1) f~[(I)(v)]' this follows from the following equality [see (23) in the limit n --+ oc 
0 

and m ~ oo]: 
II 

1 r dr 1 
x = l - Q000 j C0 - b[r = l - Qo f(Co, u) - F(C0, u), (28) 

which is invertible by virtue of the positiveness of Co - b(1), f (Co, 0) = 0, and f(Co, 1) = IQo, i.e., a(z)  = 
r  is uniquely determined from (28). 

If lim F(Co, 1) < cr and IQo >~ f[b(1), 1] = llQo, then, from (22) we obtain 
Co-b0) 

~ ~=z-h = d~(~) = 0. dx 

Taking the latter into account and assuming for l > 11 that 

l" 1, x e [0 ,1 -  11], 
O'(X) 

r  e (z - 11, l], 

we see that a(x) is a nonincreasing, upward convex, generalized solution of problem (5), (6). By construction, 
this solution is obviously unique. 

To complete the proof of the theorem, we check the validity of the inequalities 

um,,[tb(x,t)] <~ Vmn(X,t) < Utah(X), (29) 

w h e r e ~ b = ( z - l ) ( t + l ) 7 / ( ( t + l )  " f + 6 ) + l ,  (re, n ) >  No, 6 > 6 0 >  1, and 7 < 7 o < 7 1  and No, 60, and 
"~0 are some constants. 

By virtue of conditions (8), (9), (14), (17)-(20), inequalities (29) are satisfied for rather large No, ~0, 
and 7o 1 on F (a portion of the boundary of the rectangle fl that consists of the lateral sides x = 0 and x = l 
and the lower base t = 0). 

Thus, for any n > No and m > No, the difference q = utah(x) - Vmn(X, t) is nonnegative on F and in 
the region f~ (the subscripts at Umn and Vrnn are omitted) it satisfies the linear parabolic equation 

L1 (q) - A(v) Ozq Oq Oq 
- Q ( t ) B ( v )  - c l q  - = k ,  

where f l  . . . .  [Qo Q(t)]B(u)(du/dx) <<. 0 and the coefficient Cl A~v(O1)(d2u/dx 2) Q(t)Bv(02 ) '  (du/dx) 
(where 01 and 02 are intermediate values between vmn and Umn) is limited in f~ by a certain constant M4 
[see (8) and (22)1. 

Converting to the function X = qe-~t (u~ > M4), we obtain 

X F /> O, e-#tLl(X e#t) -- LI(X) - v~X --- fl e-at ~< O, (x , t )  e ~2. 

Hence, according to the maximum principle, X = qe -at/> 0 for (z , t )  ~ n, i.e., Vmn(X,t) <~ Utah(X), (x , t )  E n. 
Let us prove the left side of inequalities (29). We set # = (t + 1) ~, 

r = u,,m(~b), r = ~b(x,t), Lo(r) = A(r)  ~z  202r - QoB(r) ~xOr _ v ~70r 

and calculate Lo(r), L2(v - r) = L(v) - Lo(r) - d, where 

dr # 02z Oz Oz 
d = [Qo - Q(t)]S(r)  de # + ~' L2(z) = A(v) ~ - Q(t)B(v) -~x + c2z - v 0-7' 

c2 = A'.(01) 02r ' 0 Or - Q( t )Bv(2)  -~x 
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(01 and 02 are intermediate values between Vmn and r). We have 

( # ) 2 [  d2r dr ]  dr # ( # 1) 
L 0 ( r ) =  ~ A(r) d ~ - Q o B ( r ) ~  + Q o B ( r )  d r  ~+~i  

( x - t ) =  (t + 1)(# + 5) 2 d-r (i ~ + 6) 2 QoB(T) + t + 1 ' 

#6 d r [ [  7 v ( x - / ) ]  +[Qo-Q( t ) ]B(T)  d~ Iz ~ L 2 ( v -  "c) - (~ + 6)2 ~ QoB(r) + t + l + 6 

~<_ /z dr {[  Q0(~ / 1  ] 7 vl~ } 

Since A(t) = Qo~/((t + 1) r + 5) - M l l ( t  + 1) 71 > 0 for 3' < 3'1/2 and t t> to (to is a certain integer), 
without loss of generality, we can assume that to = 0, i.e., A(0) > 0. 

Next, taking into account that B(r )  = b',[am,[r t> ko(m,n) [k0 --* 0 as n ~ oc and m ---, oo, see (3)] 
and choosing 7 from the condition 

1 {A(O)ko } 
7 = ~ m i n  vl ,71 =7o, 

we find that L2(v - r) ~< A0 < 0 at (x, t) EfL 
Thus, the function w = (v - 7-) e -at  (vfl > [c2l) satisfies the conditions 

Wr />0' e-#tL2(we # t ) = L 2 ( w ) - v f l w = A 0 e  - ~ ' < 0 ,  (x,t) e l2 ,  

which ensure, according to the maximum principle, that w = (v - 7") e -~t is nonnegative everywhere in f~, i.e., 
v,,,,,(z, t) >1 u,,,~[r t)]. Inequalities (29) are proved. 

Equation (29) leads to the following similar inequalities for the inverse functions r - 
O'mn(r (~[Ymn(X, t)] -.~ Stun(X, t), and (~[Umn(X)] ---- O'mn(X): 

sm.(x, t) 
Since [s (x , t )  - ~(z) l  ~< Is(x, t) - sm, , (x , t ) [  + [s~, , (x,  t) - cr,,,,(x)[ + [cr,~n(x) - ~r(x)[, for any small 

there  are n u m b e r s  N = N ( e )  and T = T ( N )  such tha t  I s (x , t )  - ~r(x)l < e for (re, n) > N ,  t > T,  i.e., as 
t --~ ~ ,  s(x, t) tends to the unique solution a(x) of problem (5), (6). 

Next, taking into account that 

lUmn(X) -- u,~n(~b(x,t))[ <~ MOlX - r  ~< 
M 

(t + 1)'r' 
we come to the estimate 

M 
IVmn(X, t) - utah(x)[ <~ (t + 1)---'--~' (30) 

where 7 = 3'( m, n, l, Q0, 71); M depends on l, di, and Q0 and does not depend on m and n. 
When inequalities (11) are satisfied, the constant 7 can be chosen independently of m and n. Then, 

estimate (12) is obtained by passing to the limit n ~ eo and then to m ~ e~ in inequalities (30). The theorem 
is proved. 
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